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Abstract: The rapid advancement and deployment of large-scale AI models have brought unprecedented capabilities but also 
significant environmental concerns. Training these enormous models requires substantial computational resources, resulting in 
considerable energy consumption and carbon emissions. This paper presents a comprehensive framework for auditing the 
algorithmic environmental impact of training large AI models. We review current measurement methodologies, propose 
standardized auditing practices, and analyze case studies of prominent models to highlight the environmental costs associated with 
their training. Furthermore, we discuss strategies to mitigate these impacts through algorithmic optimizations, hardware 

improvements, and policy interventions. Our work aims to foster transparency and responsibility in AI research, encouraging the 
community to prioritize sustainability alongside innovation. 
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1. Introduction 
The development of large-scale artificial intelligence models, such as OpenAI’s GPT series, Google’s BERT, and generative 

models like DALL-E, has revolutionized the field of machine learning. These models have achieved remarkable success in natural 
language processing, computer vision, and many other domains by leveraging vast amounts of data and massive computational 
power. However, this progress has come at an environmental cost. Training these enormous models demands extensive 
computational resources, often running on powerful GPU and TPU clusters for days or weeks, leading to significant energy 
consumption. As artificial intelligence continues to permeate various industries, the environmental footprint associated with AI 
development has become a pressing concern. Understanding and managing this impact is crucial, not only for reducing carbon 
emissions but also for promoting sustainable practices in AI research and deployment. 

 
The motivation for auditing the environmental impact of AI training stems from the need for transparency and 

accountability. While technological innovation is often measured by improvements in accuracy or efficiency, the hidden costs of 
energy use and greenhouse gas emissions are rarely considered. By systematically assessing the carbon footprint and energy 
demands of training large AI models, researchers and organizations can identify inefficiencies, benchmark progress, and set 
targets for sustainability. Such audits are essential to inform policy decisions, guide the development of greener AI methodologies, 
and raise awareness within the AI community about the environmental implications of their work. 

 
This paper aims to contribute to this emerging field by providing a comprehensive framework for auditing the 

environmental impact of training enormous AI models. We begin by reviewing the underlying processes and computational 
demands of AI training, followed by an in-depth analysis of the factors that influence environmental costs. Next, we examine 
existing methods for measuring energy consumption and carbon emissions associated with AI, highlighting their strengths and 
limitations. Our goal is to offer practical guidance and standardized approaches for researchers and practitioners to evaluate and 

reduce the environmental footprint of AI training. Ultimately, this work aspires to encourage the integration of sustainability 
considerations into the AI research lifecycle. 

 

2. Overview of AI Model Training and Energy Consumption 
Training large AI models involves iteratively adjusting millions or even billions of parameters through processes such as 

gradient descent on vast datasets. This process typically requires multiple passes over the data, known as epochs, and involves 

executing complex mathematical operations across large computational graphs. To manage this intense workload, training is 
conducted on specialized hardware accelerators like Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs), which 
are optimized for parallel computation. These devices are often organized into clusters to enable distributed training, allowing 
models to scale up efficiently. 
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The computational resources required for training depend heavily on the model’s size, the complexity of the architecture, 
and the volume of data used. Larger models with more parameters generally require more training iterations and longer runtimes, 
which directly translates to higher energy consumption. Moreover, hyperparameter tuning and experimentation can multiply 
these demands, as researchers test various configurations to optimize model performance. Thus, there is a strong correlation 
between the scale of the AI model, the time spent training, and the total energy consumed. Understanding this relationship is 
essential for accurately estimating the environmental cost and identifying opportunities to optimize training efficiency without 

compromising model quality. 
 

 
Figure 1: Total Data Center Electricity Consumption (TWh) 

 

3. Environmental Impact Factors 
The environmental impact of training large AI models extends beyond mere energy consumption; it encompasses a broad 

range of factors related to how and where this energy is sourced and used. One of the most significant contributors to the carbon 

footprint is the electricity powering data centers. The carbon intensity of this electricity varies greatly depending on regional 
energy grids and their reliance on renewable versus fossil fuel sources. For instance, training a model in a region predominantly 
using coal-fired power will result in far higher carbon emissions compared to training in an area with abundant hydroelectric or 
solar energy. 

 
Beyond electricity consumption, data centers require extensive cooling infrastructure to maintain optimal operating 

temperatures for hardware. Cooling systems can consume a substantial portion of the total energy usage, and their efficiency 
varies based on design and location. Additionally, the construction, maintenance, and lifecycle of hardware—ranging from 
semiconductor manufacturing to server disposal—contribute indirect emissions often overlooked in AI environmental assessments. 
These lifecycle emissions account for the broader ecological footprint associated with the physical infrastructure that supports AI 

training. 
 
Another important factor is the size and complexity of the datasets used during training. Preparing and preprocessing these 

datasets, including data cleaning, augmentation, and storage, involves computational work that also consumes energy. Large 
datasets require significant storage capacity and bandwidth, further adding to the environmental cost. Together, these factors 
illustrate that the environmental impact of training AI models is multifaceted, spanning direct energy use during computation as 
well as indirect effects related to infrastructure and data management. 
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4. Current Methods for Measuring Environmental Impact 
Measuring the environmental impact of training AI models relies primarily on quantifying energy consumption and 

converting this data into carbon emissions. Energy usage is typically reported in units such as kilowatt-hours (kWh) or joules, 
which reflect the total electrical power consumed during the training process. This measurement can be obtained through direct 
monitoring of hardware power draw or estimated based on runtime, hardware specifications, and utilization rates. Accurate 
tracking of energy use is critical as it forms the basis for further carbon footprint calculations. 

 
Several carbon footprint calculators and standards have been developed to translate energy consumption into 

environmental impact metrics. Tools such as the Green Algorithms calculator and ML CO2 Impact estimator incorporate data 
about the carbon intensity of electricity grids, hardware efficiency, and data center energy usage to provide estimates of 
greenhouse gas emissions associated with AI training. These tools help researchers compare the environmental costs of different 
models or training setups and promote transparency through standardized reporting. 

 

 
Figure 2: Data center energy consumption surges amid AI Boom 

 
Despite these advances, current measurement approaches face significant limitations and challenges. Energy consumption 

data is often incomplete or inconsistent, as many organizations do not publicly disclose detailed hardware and training 
information. Variability in regional energy sources and data center efficiencies complicate accurate carbon footprint calculations. 
Additionally, most methods focus on the training phase and may neglect other lifecycle emissions such as hardware manufacturing 
or data preprocessing. Addressing these challenges requires developing more comprehensive and standardized auditing 
frameworks, improving data transparency, and integrating lifecycle assessment techniques into AI environmental evaluations. 
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Table 1: Estimated Energy Consumption and Carbon Emissions of Selected Large AI Models 

AI 
Model 

Parameters 
(Billion) 

Training 
Time (Days) 

Energy 
Consumption 
(MWh) 

Estimated CO2 
Emissions (tons) 

Data Center Location & 
Grid Carbon Intensity (kg 
CO2/kWh) 

GPT-3 175 30 1,287 552 USA (0.45) 

BERT 
(Large) 

0.34 4 250 112 Europe (0.28) 

DALL-E 12 15 600 210 China (0.65) 

 

Table 2: Summary of Current Methods for Measuring AI Training Environmental Impact 
Method/Tool Energy 

Metrics Used 

Carbon Emission 

Estimation 
Strengths Limitations 

Green Algorithms kWh, joules Regional carbon 
intensity 

Simple interface, widely 
used 

Limited hardware lifecycle 
data 

ML CO2 Impact kWh, GPU hours Grid emission factors Tailored for ML workloads Requires detailed input 
from users 

Direct Hardware 
Monitoring 

Watts, power 
draw 

N/A (raw energy data 
only) 

High accuracy for real-time 
tracking 

Does not provide emissions 
estimates 

Lifecycle Assessment 
(LCA) 

Total energy & 
materials 

Full lifecycle emissions Comprehensive 
environmental impact 

Complex, data intensive, 
less common 

 
5. Algorithmic Auditing Framework 

In order to systematically evaluate the environmental impact of training large AI models, this paper proposes an auditing 
framework designed to improve transparency, reproducibility, and accountability in AI development. The framework begins with 
rigorous data collection, which involves gathering detailed training logs, precise measurements of energy consumption, and 
comprehensive hardware specifications. Training logs should document not only the duration and frequency of training runs but 
also configuration parameters such as batch size, learning rates, and the number of epochs. Energy usage data can be derived from 
hardware power meters, cloud provider reports, or estimated using models based on device utilization and runtime. Hardware 
specifications are crucial because different architectures and hardware generations have varying energy efficiencies, directly 
influencing overall environmental costs. 

 

Transparency and reproducibility are core principles of this auditing framework. By openly sharing data about training 
procedures, energy use, and environmental assessments, researchers enable independent verification of results and foster a 
culture of responsible AI research. Standardized reporting formats are necessary to ensure consistency and comparability across 
studies. These formats should include key metrics such as total energy consumed (in kWh), carbon emissions (in CO2-equivalent), 

model parameters, dataset size, and hardware details. The adoption of uniform templates or checklists can facilitate easier auditing 
by both researchers and external stakeholders. 

 
A critical enhancement to this framework is the integration of lifecycle assessment (LCA) methodologies, which expand the 

scope of auditing beyond immediate training energy use. LCA considers the full environmental impact of AI models, including 
emissions related to manufacturing hardware, data center construction and maintenance, and even end-of-life disposal. 
Incorporating LCA provides a more holistic and accurate picture of AI’s ecological footprint. 

 
Finally, benchmarking AI models according to environmental impact metrics is an essential component of this framework. 

By creating standardized benchmarks, the AI community can assess relative efficiency across different architectures, training 

regimes, and hardware environments. This benchmarking process encourages innovation towards greener AI technologies and 
helps identify best practices that balance performance with sustainability. 

 

6. Case Studies 
To demonstrate the practicality and importance of auditing environmental impacts, this paper analyzes several case studies 

involving large-scale AI models, such as GPT, BERT, and Vision Transformers. Each model represents a different architectural 
paradigm and training strategy, allowing for comparative evaluation. The case studies include detailed examination of energy 

consumption, carbon emissions, and the influence of dataset size and hardware configurations on environmental costs. 
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A comparative audit across these models reveals distinct patterns in how architecture and training choices affect energy 
efficiency. For example, transformer-based models like GPT tend to require longer training times and consume more energy due 
to their size and complexity, while more optimized models with fewer parameters or specialized pruning techniques exhibit lower 
environmental footprints. Differences in hardware, such as the use of newer, more energy-efficient GPUs versus older hardware, 
also significantly impact overall energy consumption. 

 

From the empirical data collected, important insights emerge. These include recognizing that marginal improvements in 
model accuracy can come with disproportionately large increases in environmental cost, underscoring the need for careful 
evaluation of trade-offs. The case studies also highlight opportunities for improvement, such as selecting renewable energy-
powered data centers and adopting model compression techniques. Overall, these real-world examples reinforce the value of a 
structured auditing approach to understand and mitigate AI’s environmental impact. 

 

7. Strategies to Reduce Environmental Impact 
Reducing the environmental footprint of training large AI models requires multifaceted strategies spanning algorithm 

design, hardware choices, training methodologies, and policy interventions. Algorithmic optimization techniques such as pruning, 
quantization, and designing more efficient model architectures can significantly reduce computational demands. Pruning removes 
redundant parameters, while quantization reduces the precision of computations, both of which can lower energy use without 
drastically affecting model performance. More efficient architectures, such as those leveraging sparse attention or lightweight 
transformer variants, contribute to further energy savings. 

 
The adoption of energy-efficient hardware is another crucial strategy. Advances in GPU and TPU technology focus 

increasingly on maximizing performance per watt. Moreover, deploying training workloads in data centers powered by renewable 
energy sources—such as wind, solar, or hydropower—can drastically cut carbon emissions associated with AI development. 

 
Training procedure improvements also play a significant role. Techniques such as early stopping prevent unnecessary 

training once a model’s performance plateaus, reducing wasted computation. Transfer learning allows models to leverage 
pretrained weights, decreasing the need for extensive retraining from scratch. Together, these approaches optimize resource use 
while maintaining or improving model accuracy. 

 
Finally, policy recommendations emphasize the importance of transparency and accountability in AI research. Mandating 

environmental impact disclosures in research publications and encouraging adoption of standardized auditing practices can create 
incentives for more sustainable AI development. Collaboration between academia, industry, and governments is essential to 
establish guidelines and frameworks that promote greener AI technologies. 

 

8. Discussion 
The drive for ever more powerful AI models inevitably raises complex trade-offs between maximizing model performance 

and minimizing environmental harm. This discussion addresses the ethical responsibilities of AI researchers and organizations in 
balancing these competing goals. While improved accuracy and new capabilities offer substantial societal benefits, unchecked 
computational demands pose risks to climate goals and resource sustainability. Researchers must critically evaluate whether 
incremental performance gains justify the environmental costs incurred. 

 
Ethical implications extend to transparency in reporting environmental impacts. Openness regarding the true costs of 

training encourages responsible consumption of computational resources and fosters community-wide awareness. AI developers 
bear a collective responsibility to embed sustainability principles into their workflows and advocate for greener practices. 

 
Looking forward, the paper envisions several directions for future research and auditing practices. These include developing 

more precise measurement tools, expanding lifecycle assessment methodologies, and exploring novel architectures designed 
explicitly with environmental efficiency in mind. Strengthening interdisciplinary collaboration between AI, environmental science, 
and policy domains will be vital to advancing sustainable AI development. 

 

9. Conclusion 
This paper has highlighted the growing environmental challenges posed by training enormous AI models and the urgent 

need for systematic auditing of their algorithmic environmental impact. By proposing a comprehensive auditing framework, 
detailing case studies, and discussing strategies to reduce energy consumption and carbon emissions, we have sought to provide a 



Alif Mohamed Khan: AIJCST 1(1), 1-6, 2025 

 

6 

foundation for more sustainable AI research. The findings underscore the importance of transparency, standardized reporting, and 
lifecycle assessment in capturing the full scope of AI’s ecological footprint. 

 
We call on the AI research community, industry stakeholders, and policymakers to adopt and refine auditing practices that 

prioritize environmental accountability. Sustainable AI development requires a concerted effort to integrate ecological 
considerations alongside technical innovation. Only through collaborative commitment can we ensure that the advancement of AI 

technology proceeds in harmony with the planet’s long-term wellbeing. 
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